Predicting Length Of Stay Using Neural Networks on MIMIC III

Thanos Gentimis

New Orleans
October 9th 2017
Have you used machine learning recently?

All images and logos belong to their respective owners and are used for illustration purposes only
Machine Learning is Useful

• Healthcare:
 • AI assisted diagnoses (IBM Watson)
 • Health Informatics

• Banking:
 • Fraud detection
 • Risk analysis

• Safety:
 • Face recognition – intruder detection
 • Spam email detection
Classic Research Approach

Subject Matter Expert
• Asks Question
• Provides Dataset

Analyst
• Prepares Data
• Designs Experiment
• Creates model

Team
• Answers Question
• Evaluates process
Machine Learning Approach

- Data Collection
- Data Coming in
- Data Warehouse
- Clustering
- Trend Analysis
- Machine Learning
- Outlier Detection
- Analyst
 - Explains Trends
 - Evaluates Outliers
 - Asks the right questions
- Subject Matter Expert
Machine Learning Tools

- Neural Networks
- Support Vector Machines
How I use Neural Networks

Machine Learning

Image Recognition

Sentiment Analysis

Health Informatics

Learning Associations

Classification

Prediction

Extraction
Individual Neuron
Neural Network Description

- Functions used:
 - Linear
 - Multi-quadratic
 - Gaussian
 - Logistic
 - ...

• What is the right architecture?
• Which are the right functions?

TRY ALL OF THEM!!!!!!!!!!!
Calculations, Calculations Everywhere!

Best Configuration

VM
DATA
TIME
MIMIC III database

- 46,000 patients
- 26 data tables
- 4+ Millions of rows in some tables
- 100+ input variables
- Images and time-series
- Connections between variables
Main Goal

Given specific health indices and characteristics of a patient right after a stay at the ICU, predict the total length of stay at the hospital.
<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>ICU LOS</th>
<th>SI</th>
<th>Vitals</th>
<th>Notes</th>
<th>Long Stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>M</td>
<td>12D</td>
<td>1</td>
<td></td>
<td>The patient suffered ..</td>
<td>N</td>
</tr>
<tr>
<td>50</td>
<td>F</td>
<td>13D</td>
<td>2</td>
<td></td>
<td>High blood pressure ...</td>
<td>Y</td>
</tr>
<tr>
<td>60</td>
<td>M</td>
<td>1M</td>
<td>12</td>
<td></td>
<td>3 cc of Benadryl...</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Baby Codes in R

- Predicting comorbidities
- Predicting death
- Predicting sepsis
- Predicting Cancer
- Predicting Length Of Stay (LOS)
Short vs Long Stay

- 79% Accuracy
- Increase:
 - Number of input variables (37)
 - Size of input data (200,000 stays)
 - Specific diseases
New Results

• Aortic Aneurysm (92%)
• Transient Ischemic Attack (90%)
• Increase overall Long/Short prediction (87%) ??
• Predict length of stay +-2days (85%)
Final Remarks

Different Way of Thinking

Great at Prediction

Bad at “telling a story”

Perfect for Collaboration
<table>
<thead>
<tr>
<th>Interested in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Informatics (Any data, any question)</td>
</tr>
<tr>
<td>Precision Agriculture and machine learning</td>
</tr>
<tr>
<td>Sentiment analysis (twitter data)</td>
</tr>
<tr>
<td>Price analysis (commodities)</td>
</tr>
<tr>
<td>Networks (Topological Data Analysis)</td>
</tr>
</tbody>
</table>
THANK YOU!

agentimis1@lsu.edu